Hypervalent iodine(III)-mediated cyclopropa(e)nation of alkenes/alkynes under mild conditions.

نویسندگان

  • Shaoxia Lin
  • Mengru Li
  • Zhiyong Dong
  • Fushun Liang
  • Jingping Zhang
چکیده

Hypervalent iodine(III)-mediated dioxygenation and diamination of alkenes have been previously developed. In this study, the potential application of hypervalent iodine(III) reagent was successfully extended to the dialkylation and cyclopropa(e)nation of unsaturated alkenes and alkynes. The reactions of alkenes with malononitrile and other active methylene compounds as the carbon nucleophiles give access to multisubstituted cyclopropane derivatives in moderate to excellent yields. Both electron-rich and electron-deficient alkenes are suitable substrates. Alkynes, no matter terminal or internal alkynes, work well, affording the corresponding highly functionalized cyclopropenes efficiently. A plausible mechanism of iodo(III)cyclopropanation, ring opening attack by the carbon-nucleophile, and recyclization was proposed for the cyclopropanation of trans-alkene substrates. The cyclopropenation was thought to proceed via iodo(III)cyclopropanation, ring-opening attack by the carbon-nucleophile, recyclization into a four-membered iodo(III)cyclobutene and final reductive elimination. The protocol might provide a complementary route to cyclopropanation/cyclopropenation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pd-catalyzed intramolecular oxyalkynylation of alkenes with hypervalent iodine.

The first example of intramolecular oxyalkynylation of nonactivated alkenes using oxidative Pd chemistry is reported. Both phenol and aromatic or aliphatic acid derivatives could be used under operator-friendly conditions (room temperature, technical solvents, under air). The discovery of the superiority of benziodoxolone-derived hypervalent iodine reagent 3d as an alkyne transfer reagent furth...

متن کامل

Hypervalent iodine(III)-induced oxidative [4+2] annulation of o-phenylenediamines and electron-deficient alkynes: direct synthesis of quinoxalines from alkyne substrates under metal-free conditions.

Hypervalent iodine(III)-induced oxidative [4+2] annulation of o-phenylenediamines and electron-deficient alkynes under metal-free conditions has been developed. The reaction allows for direct access to quinoxalines bearing two electron-withdrawing groups in an efficient manner.

متن کامل

Copper-catalyzed aminoalkynylation of alkenes with hypervalent iodine reagents† †Electronic supplementary information (ESI) available: Characterization data and experimental procedures. CCDC 1567005–1567007. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc03420b

A copper-catalyzed aminoalkynylation of alkenes is achieved with ethynylbenziodoxolone (EBX) reagents under mild conditions with only 1 mol% copper catalyst. This transformation allows for rapid construction of diverse important azahetereocycles and installation of valuable alkyne groups in one step. The developed method features remarkable substrate scope for both terminal and internal alkenes...

متن کامل

Diastereoselective aminooxygenation and diamination of alkenes with amidines by hypervalent iodine(III) reagents.

Diastereoselective anti-aminooxygenation and anti-diamination of alkenes with amidines were enabled by hypervalent iodine(III) reagents such as PhI(OCOR)2 and PhI(NMs2)2, respectively. The present transformation offers diastereochemically pure dihydroimidazoles divergently from E- and Z-alkenes.

متن کامل

Thioamination of Alkenes with Hypervalent Iodine Reagents

An efficient thioamination of alkenes mediated by iodine(III) reagents is described. The use of different sulfur nucleophiles allows the flexible synthesis of 1,2-aminothiols from alkenes. By employing chiral iodine(III) reagents, a stereoselective version of the thioamination protocol has also been developed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 12 8  شماره 

صفحات  -

تاریخ انتشار 2014